Introduction to WiMAX
Contents

- Overview of WiMAX
- WiMAX Network Architecture
- WiMAX Basics
- WiMAX Physical Layer Basics
Overview of WiMAX
OUTLINE

- Wired or Wireless: The Future
- Components of Wireless Networks
- Classification of Wireless Networks
- Problems in Wireless Links
- Overview of Wi-Fi
- Overview of WiMAX
- WiMAX Strengths
Objectives

• The main objectives of this session are:
 • To understand the need and history for wireless networks.
 • To comprehend salient features of different wireless networks.
 • To compare different standards of wireless networks.
 • To understand the key aspects of WiMAX standard.
Ideal Network

Faster

More

Secure

Manageable

Seamless connectivity to all networks, applications, & services

Anytime Anywhere
Wired or Wireless: The Future

• Portability

• Mobility
 • Ability to be reached regardless of location (Roaming)
 • Session continuity while traversing between BS and across diverse networks (Handover)

• Coverage
 • Extend to rural subscribers
 • Areas where wired networks not available
Components of Wireless Network

• **Wireless hosts**
 • Laptops, palmtops, PDA, desktop computer, phone
 • WiMAX calls wireless host ‘Customer Premises Equipment (CPE)’

• **Access Points**
 • The base station (BS)
 • Responsible for sending and receiving data
 • A wireless host is associated with a BS
Components of Wireless Network

• Wireless link
 • Communication link between wireless host and access point/BS and/or among wireless hosts.
 • The link characteristics depend upon the wireless technology.

• Network Infrastructure
 • A larger network with which a wireless host wishes to communicate.
 • Service providers e.g. Wi-Tribe, Wateen, Mobilink etc.
Classification of Wireless Networks

• Single Hop / Multiple Hop
 • Number of hops a packet undergoes in the wireless network

• Infrastructure Based / Infrastructure Less
 • BS present or absent
 • Adhoc – no BS

• Examples
 • Single Hop Infrastructure based: Wi-Fi in classroom/library/cafe, cellular networks and Wimax
 • Single Hop Infrastructure less: Bluetooth

• Fixed / Mobile
 • Nomadicity
 • Ability to be reached regardless of location - Roaming
 • Session continuity while traversing between BS - Handover
Problems in Wireless Links

• **Decreasing Signal Strength**
 • In free space, the signal will disperse that results in decreased signal strength.

• **Interferences from other Sources**
 • Radio sources transmitting in the same frequency band will interfere with each other.

• **Multipath Propagation**
 • Reflection of electromagnetic waves off objects and ground
 • Results in blurring of the received signal at the receiver.
Standards of Wireless Technology

- Bluetooth
- IEEE 802.11 (Wi-Fi)
- IEEE 802.16d (Fixed WiMAX)
- IEEE 802.16e (Mobile WiMAX)

Layers:
- PAN
- LAN
- MAN
- WAN
Wi-Fi: The Predecessor of WiMAX

- Wi-Fi (Wireless Fidelity) is a set of technologies that are based on the IEEE 802.11a, b, and g standards.
- Wi-Fi is considered to be one of the first widely deployed fixed broadband wireless networks.
- The Wi-Fi architecture consists of a base station that wireless hosts connect to in order to access network resources.
- As long as the users remain within 300 feet of the fixed wireless access point, they can maintain broadband wireless connectivity.
Wi-Fi Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Throughput</th>
<th>Range</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11a</td>
<td>Up to 54 Mbps</td>
<td>Up to 300 ft</td>
<td>5 Ghz</td>
</tr>
<tr>
<td>802.11b</td>
<td>Up to 11 Mbps</td>
<td>Up to 300 ft</td>
<td>2.4 Ghz</td>
</tr>
<tr>
<td>802.11g</td>
<td>Up to 54 Mbps</td>
<td>Up to 300 ft</td>
<td>2.4 Ghz</td>
</tr>
</tbody>
</table>

Find about the latest 802.11n standard?
IEEE 802.11n

- IEEE 802.11n is the next-generation standard enhancements to the current 802.11 standard to provide improvements in throughput.
- IEEE 802.11n Task Group (TGn) established in September 2003.
- Salient Features include
 - Data rate of 300 Mbps
 - Works in both 2.4/5GHz band
 - Multiple Input Multiple Output (MIMO)
 - Backward Compatibility.
Wi-Fi Issues

• **Effective range**
 • Limited level of mobility

• **Interference from other sources**
 • Operate in unlicensed spectrum

• **Signal strength decreases with distance**

• **Multipath propagation**
 • Waves reflect off ground and objects
What is WiMAX?

- WiMAX (Worldwide Interoperability for Microwave Access) is a standards-based technology enabling the delivery of last mile wireless broadband access as an alternative to cable and DSL.

- The technology is specified by the Institute of Electrical and Electronics Engineers, as the IEEE 802.16 standard.

- WiMAX eliminates the constraints of Wi-Fi.
WiMAX Strengths

• Effective range
 • 2-5 miles
 • Full mobility
 • Broad operating range – unlicensed (5 GHz), licensed (3.5 GHz)

• Interference from other sources
 • Operates in licensed spectrum

• Signal strength decreases with distance

• Multipath propagation
 • Wave reflects of ground and objects

Efficient signal processing schemes, e.g. OFDM/OFDMA etc
WiMAX Vs Wi-Fi

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fixed WiMAX</th>
<th>Mobile WiMAX</th>
<th>Wi-Fi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards</td>
<td>IEEE 802.16d-2004.</td>
<td>IEEE802.16e-2005.</td>
<td>IEEE 802.11a/b/g</td>
</tr>
<tr>
<td>Coverage (Non-line-of-site)</td>
<td>3-5 miles</td>
<td>< 2 miles</td>
<td><100 ft.</td>
</tr>
<tr>
<td>Mobility</td>
<td>Not applicable</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>UL: 3.3 – 6.5 Mbps</td>
<td>UL: 4-7 Mbps</td>
<td>IEEE 802.11 a & g: 54 Mbps</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>10 – 66 GHz (Line-of-site)</td>
<td></td>
<td>IEEE 802.11.b: 2.4GHz</td>
</tr>
<tr>
<td></td>
<td>2-11 GHz (Non-line-of-site)</td>
<td></td>
<td>IEEE 802.11.a: 5GHz</td>
</tr>
</tbody>
</table>
WiMAX accommodates both fixed and mobile deployments.

Fixed Profiles

- Point To Point (PTP) applications include microwave backhaul.
- Point To Multipoint (PTM) applications include broadband for residential, small office/home office and small-to-medium-enterprise markets, wireless backhaul for Wi-Fi hotspots.
WiMAX Frequency Allocation

International Frequency Allocation

Canada:
• 2.3 GHz
• 2.5 GHz
• 3.5 GHz

Europe:
• 3.5 GHz
• possibly 2.5 GHz

Russia:
• 3.5 GHz
• possibly 2.3, 2.5 GHz

USA:
• 2.5 GHz

Central & South America:
• 2.5 GHz
• 3.5 GHz

Middle East & Africa:
• 3.5 GHz

Asia Pacific:
• 2.3 GHz
• 3.3 GHz
• 3.5 GHz
• possibly: 2.5 GHz
WiMAX Technical Challenges

<table>
<thead>
<tr>
<th>Service Requirements</th>
<th>Technical Challenge</th>
<th>Potential Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Line-Of-Site coverage</td>
<td>Multipath fading and interference</td>
<td>Diversity, channel coding etc.</td>
</tr>
<tr>
<td>High data rate</td>
<td>High spectral efficiency</td>
<td>Adaptive Modulation Coding (AMC) etc.</td>
</tr>
<tr>
<td></td>
<td>Inter Symbol Interference (ISI)</td>
<td>OFDM, OFDMA etc.</td>
</tr>
<tr>
<td>Quality of Service (QoS)</td>
<td>Multiplexing voice, data and video on a single access network</td>
<td>Complex MAC layer</td>
</tr>
<tr>
<td></td>
<td>Radio Resource Management</td>
<td>Efficient scheduling algorithms</td>
</tr>
<tr>
<td>Security</td>
<td>Privacy and integrity of data</td>
<td>Encryption</td>
</tr>
<tr>
<td></td>
<td>Prevent unauthorized access to the network</td>
<td>Authentication and access control</td>
</tr>
</tbody>
</table>
Summary: WiMAX Is....

- IEEE 802.16 standard
 - Fixed, Mobile
- High speed
- Broader coverage
- Licensed Frequency band
- Lower layer technology- Standard defined at PHY and MAC Layers
Long Term Evolution (LTE)

- Competing with WiMAX.
- 3GPP’s LTE standard evolved from the High-Speed Packet Access (HSPA) cellular standards.
- Single Carrier Frequency Division Multiple Access (SCFDMA) in the uplink.
 - Increase battery life
- Higher data rates: (100Mbps downlink, 60Mbps uplink)
- Lower latency (~10ms)
- The LTE standard can be used with many different frequency bands.
 - 700 and 1700 MHz in North America.
 - 900, 1800, 2600 MHz in Europe
Difference Between WiMAX and LTE

<table>
<thead>
<tr>
<th></th>
<th>LTE</th>
<th>WiMAX 802.16e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Layer</td>
<td>DL: OFDMA</td>
<td>DL: OFDMA</td>
</tr>
<tr>
<td></td>
<td>UL: SC-FDMA</td>
<td>UL : OFDMA</td>
</tr>
<tr>
<td>Duplex Mode</td>
<td>FDD and TDD</td>
<td>TDD</td>
</tr>
<tr>
<td>VoIP Capacity</td>
<td>80 users/sector</td>
<td>20 users/sector</td>
</tr>
<tr>
<td>Channel Bandwidth</td>
<td>5, 10, 15, 20 MHz</td>
<td>5, 7, 10 MHz</td>
</tr>
<tr>
<td>Peak data rates</td>
<td>DL: 302 Mbps (4 × 4) UL : 75 Mbps (2 × 4)</td>
<td>DL: 46 Mbps (2 × 2) UL : 4 Mbps (1 × 2)</td>
</tr>
<tr>
<td>Latency</td>
<td>Link layer < 5 ms Handoff < 50 ms</td>
<td>Link layer ~ 20 ms Handoff ~ 35 to 50 ms</td>
</tr>
<tr>
<td>Frame Length</td>
<td>0.5 ms</td>
<td>5ms</td>
</tr>
</tbody>
</table>
WiMAX Network Architecture
Objectives

Main Objectives of this session are:

• To understand different profiles used by WiMAX network.
• To explain the architecture of a typical WiMAX network.
• To understand the functionality of different servers used in a WiMAX network.
• To explain the architecture provided by Motorola for the WiMAX network.
Contents

• WiMAX Network Architecture
 • What is Access Service Network (ASN) and Connectivity Service Network (CSN)?
 • Functions of ASN and CSN
• WiMAX Interfaces
• Motorola WiMAX Network Architecture
 • ASN
 • Base Controller Unit (BCU) and its functions
 • ASN-GW
 • Functions of Carrier Access Point Controller (CAPC)
 • Functions of Redback Router
 • Element Management System (EMS)
 • CSN
 • Authentication Accounting and Authorization (AAA) Server
 • Other CSN Servers e.g. DNS, NTP etc
Contents

• WiMAX Network Architecture
 • What is Access Service Network (ASN) and Connectivity Service Network (CSN)?
 • Functions of ASN and CSN
• WiMAX Interfaces
• WiMAX Profiles
 • Profile A, B, C
 • Merits and Demerits of Difference profiles
• Motorola WiMAX Network Architecture
 • ASN
 • Base Controller Unit (BCU) and its functions
 • ASN-GW
 • Functions of Carrier Access Point Controller (CAPC)
 • Functions of Redback Router
 • Element Management System(EMS)
 • CSN
 • Authentication Accounting and Authorization (AAA) Server
 • Other CSN Servers e.g. DNS, NTP etc
WiMAX Networks Architecture

- WiMAX split the system into three areas:
 - Network Service Provider (NSP)
 - Network Access Provider (NAP)
 - Customer Premises Equipment (CPE)

Fig 1: WiMAX architecture
WiMAX is an Access Network

<table>
<thead>
<tr>
<th>Network</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSP</td>
<td>Network service Provider</td>
</tr>
<tr>
<td></td>
<td>Provide all of the services and features being offered by the carrier</td>
</tr>
<tr>
<td>CSN</td>
<td>Connectivity Service Network</td>
</tr>
<tr>
<td></td>
<td>Responsible for subscribers IP connectivity</td>
</tr>
<tr>
<td>ASN</td>
<td>Access Service Network</td>
</tr>
<tr>
<td></td>
<td>Provide network access and mobility</td>
</tr>
<tr>
<td>CPE</td>
<td>Customer Premises Equipment</td>
</tr>
<tr>
<td></td>
<td>Provides the customer interface</td>
</tr>
</tbody>
</table>

Table 1: Functions of Network Elements
Functions of ASN and CSN

ASN
- **Network discovery**
 - Selecting the service provider
 - Wateen, Wi-tribe, Mobilink Infinity
- **Network entry**
 - Providing mechanism to CPE for accessing the network resources and services
- **Radio Resource Management**
- **Accounting assistance**
 - Records the duration of user session
- **Quality-of-Service**

CSN
- **Provides access to Internet**
 - Assigns IP addresses to CPEs for internet access
- **AAA server**
 - Provides authentication, accounting and authorisation services to network provider
- **Manages Quality of service for each subscriber**
 - Policies for each subscriber are defined – subscription profiles
 - Admission to network and access to various services
- **WiMAX subscriber billing**
Network Service Provider (NSP)

• The NSP network provides
 • Services and features being offered by the carrier.
 • Authentication, authorization and allocation of IP addresses.
 • Broadband access services.

• These may include:
 • Voice over IP (VoIP)
 • Streaming audio or video programs
 • Internet access
 • E-mail
 • Instant Messaging
 • Access to databases
Network Service Provider (NSP)

Fig 3: Logical Elements of the NSP
Network Service Provider (NSP) & Operators in Pakistan

- NSP may establish roaming agreement with other NSPs and contractual agreements with the third party application providers for providing WiMAX services to SS.

- Few Network Service Providers are
 - NayaTel
 - Micronet
 - PTCL
 - Wateen

- Few WiMAX operators are
 - Mobilink Infinity
 - Wateen
 - Wi-Tribe
 - Qubee
Connectivity Service Network (CSN)

- **Authorization, Authentication and Accounting (AAA) Server**
 - Responsible for managing CPE authentication.
 - Providing the network with the profile information of each subscriber.

- **Domain Name Server (DNS)**
 - Responsible for translating domain names into IP addresses.

- **Dynamic Host Configuration Protocol (DHCP) Server**
 - Responsible for providing dynamic IP address to devices on a network.
 - Using DHCP allows IP addresses to be added to a computer automatically.

- **Home Agent (HA)**
 - Use for mobility feature.

- **Gateways**
 - Added to the network to provide access to other systems outside of the CSN.
Connectivity Service Network (CSN)

Fig 4: Logical Elements of the CSN
Access Service Network (ASN)

• The ASN provides the radio connection to the SS from the network.
 • Radio Resource Management (RRM)
 • Mobility Management (MM)

• The ASN contains two main functional areas:
 • ASN Gateway
 • Base Station(BS)

• The ASN gateway is connected to the Base Stations and the CSN.
Access Service Network (ASN)
Summary of WiMAX Architecture

Fig 6: WiMAX Architecture
Interfaces in WiMAX

• The elements that make up the WiMAX network are connected by physical connections carrying many logical interfaces.

• The WiMAX Forum defines the following Interfaces for its network architecture.
 • R1 → SS—BS.
 • R2 → SS—CSN.
 • R3 → ASN — CSN.
 • R4 → ASN — ASN.
 • R5 → CSN — CSN.
 • R6 → BS—ASN-GW.
 • R7 → ASN-GW.
 • R8 → BS—BS.
Interfaces in WiMAX

Air Interface between SS & BS

SS-ASN mobility

BS – ASN-GW Management

Inter-CSN mobility

BS-BS Handover

ASN-CSN allowing AAA, policy enforcements, mobility management etc

Internal interface to the ASN-GW

Fig 8: WiMAX Interfaces
Contents

• WiMAX Network Architecture
 • What is Access Service Network (ASN) and Connectivity Service Network (CSN)?
 • Functions of ASN and CSN
• WiMAX Interfaces
• Motorola WiMAX Network Architecture
 • ASN
 • Base Controller Unit (BCU) and its functions
 • ASN-GW
 • Functions of Carrier Access Point Controller (CAPC)
 • Functions of Redback Router
 • Element Management System (EMS)
 • CSN
 • Authentication Accounting and Authorization (AAA) Server
 • Other CSN Servers e.g. DNS, NTP etc
Motorola WiMAX Network Architecture

- The ASN elements provided by Motorola are as follows:
 - WiMAX Base Station (BS) or Access Point (AP)
 - Carrier Access Point Controller (CAPC)
 - Redback Router
 - Element Management Server (EMS)
 - Customer Premise Equipment (CPE)
Motorola WiMAX Network Architecture

• The CSN elements provided by Motorola are as follows:

 • Authentication, Authorization and Accounting (AAA) Server
 • Dynamic Host Configuration Protocol (DHCP) Server
 • Domain Name Service (DNS) Server
 • Network Time Protocol (NTP) Server
 • Routers/Switches/Firewall
ASN Elements

• Motorola has chosen the following equipment within its ASN solution:

 • Base Station
 • Diversity Access Point (DAP)
 • ASN-GW
 • CAPC
 • Router (Redback-SmartEdge)
Diversity Access Point (DAP)

• The DAP consists of two major subsystems:

1. RF Modules
 • Performs all RF transmit and receive processing to deliver signals to Base Controller Unit (BCU).

2. The BCU
 • Perform signal processing
 • Site synchronization
 • Power distribution
 • Network interfacing
RF Modules

- WAP 400, WAP 600 etc.
- It features multiple transmit and receive paths.
- Supports 4 sectors.
- 20 Watts of power per sector.
- Supports 256 active users per sector.

RF Module installed at NUST

- WAP 35450.
- Operating Frequency 3.5GHz.
- Support Bandwidth Up to 200MHz.
- Single Sector (Omni directional).
- 5 Watts of power.
Base Controller Unit (BCU)

- Pluggable slots for up to two site controllers.
- Four modems support a four sector site configuration.
- BCU contains:
 - Alarm I/O board.
 - Fans and heating system.
 - Power distribution system for the entire site.
Functions of Base Controller Unit (BCU)

- Site synchronization
 - GPS Module is installed for Atomic clock.

- Power distribution
 - Distribute the equal powers in all defined sectors.

- Network interfacing
 - Provide interfacing and access control to the backhaul network and external alarms.
Base Controller Unit (BCU)

Fig 11: BCU Internal View
Base Controller Unit (BCU)

External view
- BCU door
- AP control
- Customer I/O
- Ethernet ports
- Remote GPS

Internal view
- BCU FAN
- Power Supply 1
- Power Supply 2
- Power Supply 3
- Modem Card 1
- Modem Card 2
- Controller Card

802.16e MAC and PHY processing.
- Digital programming
- Ethernet switch
- Interfaces for backhaul
- Site alarms
- I/O

Fig 12: BCU Internal & External View
Function of CAPC

- CAPC performs security related functions and network mobility in Motorola WiMAX architecture. Some functions are:
 - Authentication / Security liaison.
 - Acts as AAA client
 - User and service profiles, equipment credentials and authentication keys storage.
 - QoS Policy Decision Point.
 - Admission control on CSN level.
 - Interfacing with billing.
 - Achieved by the co-ordination of message and lease management during handovers.
 - Handover Decision Point.
 - CSN temporary user database handling.
 - DHCP IP allocation.
 - Location Management.

Fig 13: CAPC with 14 Payload cards
Carrier Access Point Controller (CAPC)

- The CAPC chassis provides total 14 slots:
 - 2 System Controller Cards.
 - Microprocessor
 - Ram
 - Hard disk
 - 2 Reserved for future use.
 - 10 available for CAPC Payload cards.
 - Host individual Base Stations
 - Run applications for data and billing

Fig 14: CAPC Internal Structure
Carrier Access Point Controller (CAPC)

• CAPC installed in NUST lab is
 • Emerson
 • 1 Payload CAPC card
 • 2 Controller cards
 • Fan

Fig 15: Emersion CAPC
Red Back Router

• The Redback SmartEdge is a multipurpose smart router which may be configured to perform the different services:
 • It routes the incoming traffic towards DHCP for IP Assignment, provides interface to DNS and EMS.

• Redback router components include the following:
 • Up to two controller cards.
 • Up to twelve traffic cards.
 • Two power supplies.
 • Fan tray containing 6 fans.

Fig 17: Red Back Router
Element Management System (EMS)

- A web based interface that is used for maintenance of the all the network elements.

- The functions it provides are as follows:
 - Fault Management
 - Provides for real-time alarm views.
 - Alarm management.
 - Event logging.
 - Network element availability reporting and diagnostics.
 - Security Management
 - Employs Access Control and Security logging procedures.
Element Management System (EMS)

• Configuration Management
 • Software and configuration data distribution.
 • Configuration reports.
 • Auto discovery of network elements.

• Performance Management
 • Provides processing of real-time and historical statistics.
LOCAL MAINTENANCE TERMINAL (LMT)

• A web based interface that is used for maintenance of the specific network elements.

• LMT available are:
 1) Carrier Access Point Controller (CAPC) LMT
 2) Access Point (AP) LMT
CAPC LMT

• Assists the operator in management of the CAPC
• Provides following functions:
 • Alarm Logs
 • Event Reports
 • Link Management
 • Security
 • Activity Logging
 • Session Management
 • State Management
 • User Management
AP LMT

- Assist the operator in management of the AP
- Provides following functions:
 - View/Modify Ethernet Network Configuration.
 - View Active Alarms.
 - View Connected MSs.
 - View Daily Log File.
 - Add/Remove a New LMT User Account.
 - Reset Modem.
 - View Running Configuration.
 - Deploy New Configuration.
 - View/Modify IP Network Configuration.
Contents

- WiMAX Network Architecture
 - What is Access Service Network (ASN) and Connectivity Service Network (CSN)?
 - Functions of ASN and CSN
- WiMAX Interfaces
- Motorola WiMAX Network Architecture
 - ASN
 - Base Controller Unit (BCU) and its functions
 - ASN-GW
 - Functions of Carrier Access Point Controller (CAPC)
 - Functions of Redback Router
 - Element Management System (EMS)
 - CSN
 - Authentication Accounting and Authorization (AAA) Server
 - Other CSN Servers e.g. DNS, NTP etc
Authentication Accounting and Authorisation (AAA) Server

• AAA server provides the following core functions in WiMAX:
 – Authentication - involves verifying an identity associated with the device or service.
 – Authorisation - involves decision-making, related to granting or denying the request from the device or service.
 – Accounting - involves maintaining the record of resource consumption by the device or service and billing.
Other Core Servers in CSN

• Domain Name Server (DNS)
 • Resolve Fully Qualified Domain Name/IP address of the network elements.

• Dynamic Host Configuration Protocol (DHCP) server
 • The DHCP server within the CSN will be used to allocate IP addresses to SS.

• Network Time Protocol (NTP) Server
 • Signals which Network Elements use to synchronize their timing clocks with network time.
LTE Network Architecture

- **Mobility Management Entity (MME)**
 - Paging procedures
 - Retransmission of Data
 - Bearer activation/deactivation
 - Authentication of UE

- **User Equipment (UE)**
 - Header compression
 - Radio Resource Management
 - Admission Control
 - Scheduling
 - Enforcement of QoS

- **eNodeB (eNB)**
 - Forward user data packets
 - Inter eNB Handover
 - Anchor for mobility between LTE & other 3GPP technologies

- **Serving Gateway**
 - Paging procedures
 - Retransmission of Data
 - Bearer activation/deactivation
 - Authentication of UE

- **Packet Data Network Gateway (PDN GW)**
 - Policy enforcement
 - Packet filtering
 - Billing
 - Anchor for mobility between 3GPP and non-3GPP technologies

- **Internet**
Questions ?